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Abstract--The nonstationary temperatures on the peaks of asperity of contacting rough surfaces have been 
determined for the sliding contact. Assuming that there exists circular source of heat on the surface of 
semi-limited body modelled by a half-space and a laycr of finite thickness, the influence of the boundary 

conditions on the temperature distribution resulting from friction is investigated. 

1. INTRODUCTION 

The processes of physical-chemical mechanics related 
to the creation and the fracture of axidized films, 
structural transfigrmations and the wear of the surface 
of friction take place in the frictional contact [1]. The 
intensity of these processes to a considerable extent is 
defined by the temperature in the frictional contact 
zone. As real surfaces are always rough, the load 
between them is transferred by the tops of asperities 
in contact which create a factual contact area. The 
friction heat is generated on these small areas, and the 
temperature on a single spot of contact is called the 
flash temperature [2]. The quantity of factual spots of 
contact depends on both the load and the surface 
roughness [3]. To compute the temperature conditions 
of contact surfaces a model is suggested in refs. [4, 5] 
which provides the presence of heat sources on the 
boundary plane. The heat sources are conditioned by 
a probable process of interaction of separate asperities 
of contiguous bodies. The contact asperities are 
modelled by spherical segments, and a single area has 
a form of a circle. The realization of such a method 
conforming to the stationary and quasi-stationary 
thermal contact has been carried out. A non-station- 
ary solution for a single immovable source on the 
thermo-insulated surface of a half-space is given in 
the monograph [6]. It is shown that the maximum 
value of the temperature, when there is such heating, 
is inversely proportional to the magnitude of the con- 
ductivity coefficient, and the velocity of the achieve- 
ment of this maximum is higher the larger the thermal 
diffusivity coefficient. These conclusions are cor- 

roborated by experimental data of the work [7]. The 
values of the time of duration of local heating tran- 
sitional processes from 0.1 to 1 ms measured in [7] 
conform to the estimations based on the real dia- 
pasons of contact spots size. 

The analysis of the kinematics of the processes of 
heat generation in the contact area [8] shows that all 
the periods of the hot spots' existence in dependence 
on their size may be changed from milliseconds to 
some seconds. When the load P and the velocity of 
sliding V grow, the intensity of the wear of contacting 
bodies increases and a faster change of the contact 
points coordinates occurs. This leads to a decrease in 
the time of the hot spots' existence. Such small dur- 
ation of the contact hot spots' existence means that 
the local values of the temperature fall as well as grow. 

2. STATEMENT OF PROBLEMS 

Now consider the sliding of a single asperity of 
circular plan form placed on the surface of a heat 
conductivity body about the other, smooth surface. 
The subject of the investigation of this work will be 
two types of the base : a semi-limited body modelled 
by a half-space and a layer of a finite thickness 1. 
Owing to friction a heat generation occurs in the con- 
tact area. It creates a heat flow for the warming-up of 
the asperity [9] 

a(r)  = TfVp(r)  O <~ r <~ R (l) 

where p(r) is the contact pressure in the contact region 
0~<r~<R[10] 
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a thermal diffusivity 
Bi Biot number (a. R/2) 
erf ( probability integral 
erfc ~ additional probability integral 

(1 - erf ~) 
Fo Fourier number (az/R 2) 
f friction coefficient 
H a/2 
J0(') Bessel function of the first kind null 

order 
l layer thickness 
L l/R 
Po 3P/(2nR2) 
P load 
qo f V po 
Qo 7 qo R/2 

NOMENCLATURE 

r 

R 
t 
T 
V 

Z 

Z 
zl 

radial coordinate 
radius of contact area 
temperature 
dimensionless temperature (t/Qo) 
velocity sliding 
axial coordinate 
dimensionless axial coordinate (z/R) 
z/L 

Greek symbols 
a coefficient of heat exchange 
7 fraction of total frictional heat input 

to the stationary body 
2 thermal conductivity 
z time 
p dimensionless radial coordinate (r/R). 

J[ (51 p(r)=po 1-- ~ . (2) 

The temperature field of the examined system is 
described by a conductivity equation 

02t 1 0 I" Ot'~ 1 t~t 
a z  + r = 

r~>0 z > 0  z > 0  (3) 

at initial 

tl~=0 = 0 

and boundary conditions (using (1) and (2)) : 

a half-space 

2 0~7 = -- Q(r) U_ ( R -  r) U+ (~) 
Z I 0 

(4) 

/ I r 2 + ~  = 0 

(5) 

a layer 

20t 2 ot --0. 
Oz z=0 = -Q(r)U_(R-r)U+(~) Ozo ~=t 

(6) 

Here U+ (~) are asymmetrical single functions [11]: 

1 ~ > 0  
U± (~) = 0 .5  -T- 0.5 ~ = 0 (7) 

0 ~ < 0 .  

3. NON-STATIONARY SOLUTION FOR A BODY 
WITH AN INSULATED BOUNOARY 

The solution to a boundary-value problem deter- 
mined by equations (3)-(5) which has been obtained 
in [12] by using the Hankel integral transform with 

respect to radial coordinate and Laplace's with respect 
to time has the form 

fo° t(p, z ,  T) = Qo ~o(¢)~(~, z ,  Fo) Jo(~p) de (8) 

where 

~-~1 [sin ~ _ cos ~) = 

O(¢,Z, Fo) = 0.5[e-¢Z erfc (2-~Fo - ,~/Fo ) 

- e'Z erfc (2~Fo  + '~ /F°) ] .  

Equation (8) determines the temperature for every 
point of the half-space during the transitional 
processes. On the steady state (z ~ oo, Fo ~ oo) we 
have 

t(p, Z) = Qo f?  ~o(~) e-~ZJo(~p) d¢. (9) 

The maximum value of  the temperature is reached 
at a point p = 0 on the surface Z = 0 and is 

tmax = Qo ~. (10)  

We will find the solution to a stationary con- 
ductivity equation (in the differential equation (3) we 
neglect the fight-hand side (RHS)) under a mixed 
boundary condition 

~ z=0 = -Qo~/(1-p2)U_(1  

+Bi ' t 'U+(p-1) .  (11) 
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Applying Hankel integral transforms of zero order 
with respect to p to equation (3) and boundary con- 
dition (11) give:~ 

t(p,Z) = ~o~ ~e-¢Zjo(~p) f, PoJo(~Po) 
Jo ~ + Bi Jo 

x [a0x/(1 - p2) + Bi. t(po, 0)] dp0 d~. (12) 

Supposing Bi << 1, we have instead of equation (12) 

-~z 4" Jo (~p) t(p, Z) ~ Qo ~o(~) e ~ d~. (13) 

Going on to ~Lhe limit p --} O, Bi ~ 0 in the RHS of 
equation (13), we find 

t(0, Z) ~- Qo fo  tp(O e-~Zd~" (14) 

Using the value of integral 6.621.1 [13], we obtain 
from equation (14) 

t(O,Z) ~- ~ x/(l + Z2)[~/(1 + Z 2) 

x arccos ( l ~ Z 2 )  (1 +-Z 2 " (15) 

Putting p ~ 0, Bi ~ 0, from equation (13) we find 
the following expression for the temperature of the 
boundary surface Z = 0 

fo t(p, O) ~ Qo tp(~)Jo(~p) d~. (16) 

The integral c f Veber-Shafheitlin type in the RHS 
of equation (16) will be represented by the hyper- 
geometrical func, tion 2F1 [14] 

fQ,,n F tel 1" 1" ^2"~ 

t(p,O)~-- | Qo ~ 1", , 5 1"~ 
p > l .  

(17) 

Expressed in climensionless variables the solution 
to a corresponding boundary-value problem from 
equations (3), (4) and (6) can be written by using the 
Laplace's integral transforms with respect to time z 
and Hankel's ones with respect to radial coordinate p 

t(p,Z,, fo) = QoL ;~2 ¢p(()F((, Zl, Fo)Jo((p) d( 

(18) 

where 
C3 

F((,  Z~, Fo) = zX~ (2-- 6kO)flf ~ COS (nkZ0(1 --e -a~e°) 
kffi=0 

f lk  = ~z:!k2 - [ -~  2 L 2  

~'1, k = 0 is Kroneker symbol. 
6k0 = (0, k # 0 

From equation (18) we obtain for a steady state 
(Fo ~ oo) 

f/ t(p, Z,) = QoL ~2¢p(OJo((p) 

x ~ (2--bkO)flf]cos(nkZl)d~. (19) 
k = O  

4. CONVECTIVE COOLING OF ASPERITY AFTER 
EXIT OUT OF THE CONTACT 

We estimate the duration of cooling process after 
the exit of a single asperity of  a rough surface out of 
the contact. The time of the cooling is defined by an 
instant of a new contact rise as a result of the asperity 
pairs' collision over the limits of  nominal contact area. 
As an initial condition of the considered process of 
heat conductivity it is naturally to take the stationary 
temperature distribution found above equation (9) in 
the case half-space and equation (19) for the layer. 
Therefore, the problem comes to a construction of the 
solution to conductivity equation (3) with a boundary 

d~Z =Bit p / > 0  p > 0  (20) 
z 0 

and initial condition : 

the half-space 

t(p, z ,  o) = 

Q0fogO(l) e-~ZJo(~p)d~ p / > 0  z > / 0  (21) 

the layer 

t(p, Z,, O) = QoL ~2tp(OJo(~p) 

× ~ (2 -- ~kO)ff~ -1 cos(nkZ0d~. (22) 
k ~ 0  

Applying Hankel integral transform of zero order 
with respect to p and Fourier modified transform with 
respect to Z [15] in consecutive order 

[(~, Z, z) = fo  pt(p, Z, Z)Jo(~p) dp 

7(4, #, z) = fo  (#cos f lZ+ B/sin #Z)~(~, Z, ~) dZ 

we obtain the solution to the boundary-value problem 
equations (3), (20) and (21) in the following form 

t(P,Z, z) = 2Qo fo  fo  qg(')~F(',#,Z, Bi) 



2398 A.A. YEVTUSHENKO et al. 

xe-(¢2+a:)r°~.Jo(~p)dfld~ (23) 

where 

fl( ~ + Bi) (fl" cos flZ + Bi" sin flZ) 
W(~, t ,  Z,  Bi) - ~(~2 + Bi 2) (f12 + Bi 2) 

At p = 0, Z = 0 equation (23) will be slightly 
simplified 

~oo (p(¢) [~ erfc (&/Fo) t(O, 0, z) = Q0 J0 

- B i .  e F°(s~:-¢2) erfc (B&/ Fo)] d~. 

(24) 

Equation (24) gives the cooling temperature at the 
centre of the hot spot in dependence on Fourier cri- 
terion after removing the frictional source. It is not 
difficult to make sure that at Fo---, 0 from equation 
(24), equation (9) follows, and at Fo --* 0o we obtain 
t --* 0 (the approach to steady state). 

Finding the solution to the conductivity problem 
for a layer, we use Hankel integral transform of zero 
order with respect to r and the transforms with respect 
to g 

7(~,flm, Z ) = f o f l t ( r , z , z ) K ( f l m , z ) r J o ( ¢ r ) d z d r  

where the kernel K(flm, z) and tim are defined according 
to the formulae 

g(fl~, z) = A~ cos fl~z + A~ sinfl~z 

tim sin f lml-  H cos flml = O. 

Here 

tim#2 H~/2 
ao = ,/(t(#~m + H =) + n j  A, = ,/(t(#~m + H ~) + 

The solution to the boundary-value problem equa- 
tions (3), (20) and (22) is given by 

t(r, z, z) = Qo f i  K(flm, z) 
m = l  

x ~G(~,flm)e-"{¢2+~)~Jo(~r)d~ (25) 
0 

where 

G ( ~ ,  t im)  = g ( ~ ) [ ( ~ l )  - 2  , z )  dz 

+ 2f l~  K(~m, z) cos (rckZ) dz 
k = l  

sin ~R 
g ( ~ )  = - c o s  ~ R .  

Putting z = 0 in equation (25) we obtain 

0 .9  ' 

0.6 

. . . .  

, - :  _ 

0 . 0  0.4 0.8 1.2 1.6 
P 

Fig. 1. Transient distribution of dimensionless non-station- 
ary temperature of surface Z = 0 along radius: 1, Fo = 10; 

2,/70= 1; 3, Fo =0.1. 

t(p, O, Fo) = Qo 

where 

fi Ck(~m)I{zk)(p, Fo) 
m = l  k = l  

+ 11 (p, Fo) f i  B(0{m) e -a~r° (26) 
m=X 

2 sin2 c% 
B(~m) - sin2~m + Bi Ck(CqD 

= -- B(Gtrn) e-=~r°(~2k 2 - o~ 2 ) -  1 

11 (p, 1:0) = L-X f f  (-2q~(() e-~2VOjo(fp) d( 

I~k)(p, Fo) = 2L ~o(Oe-~2r°flflJo(~p) d~ 

where a~ are the roots of the transcendental equation 

em sin C~m -- Bi COS C~m = O. 

In the analysis of heat processes the integrals are 
determined numerically. 

5. NUMERICAL ANALYSIS OF THE RESULTS 

The integrals in the RHS of equations (8), (9), (12)- 
(14), (18), (19) and (24) were estimated numerically by 
procedures QAGS and QAWS of the QUADPACK 
package [19]. The graphs represented in Figs. 1-8 
show the behaviour of dimensionless temperature 
T = t/Qo in dependence on dimensionless values of 
spatial coordinates and time (continuous lines cor- 
respond to the case of a layer and broken lines cor- 
respond to the half-space). 

In Fig. 1 one can see the non-stationary distribution 
of dimensionless surface temperature T calculated by 
equations (7) and (16) along the radius p at different 
values of Fourier criterion Fo. Equations (8) and (18) 
are the solutions to the conductivity problems (3)-(6) 
for a body with an insulated boundary. Therefore we 
shall judge that the stationary state near a hot spot of 
the contact is shown by a small rise in temperature 
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0.9 

t- 0.6 / 
/ 

I 

0.3I/ . . . . .  

0 2 4 6 8 
Fo 

Fig. 2. Dependence of dimensionless non-stationary tem- 
perature of surface Z = 0 from criterion Fourier: 1, p = 0; 

2, p =  1;3, p=2 .  

growth when the heating time increases by an order 
of magnitude. It is clear that near the hot spot a 
sharp temperature gradient (at Fo ~- 1) is set in a 
short interval of time while in the region p > 3 the 
temperature field is at the zero level. As the tem- 
perature reaches a. steady state near the heating region, 
the large temperature gradients remain, though their 
levels fall during the time. So, for example, for the 
half-space at Fo = 0.1, 1, 10, 50 values of the relation 
T(O, O, Fo) /T (2 ,  O, Fo) are 2759.6, 18.6, 6.4, 5.7, respec- 
tively ; at Fo = 2 the temperature at the centre of the 
contact spot is 83.4% and at the point p = 3 is only 
19.3% of the stationary value. At the points which are 
the nearest to the centre of the hot spot the transitional 
process is not so long. We note that in the heating 
region (p ~< 1) for the fixed values of time the surface 
temperature of the layer is higher than in the half- 
space. If p > 1 an inverse picture is observed. 

Mentioned properties of the transitional processes 
in frictional heating of the roughness are confirmed 
by the data represented in Fig. 2. The dependence of 
the non-stationary surface temperature at the points 
p = 0, 1,2 and 5 on the magnitude of Fourier criterion 
is represented here. The value Fo = 50 almost exactly 
corresponds to the steady state in the vicinity of the 
asperity. The results of the experimental investigations 
[8] show that the mean size of hot spots is in the 
interval 17-21 mkm. The majority of metals have 
a = 10 -5 m: s -~, thus the characteristic times of the 
transitional process will be 1.4 and 2.2 ms, respec- 
tively. 

The distribution of the dimensionless steady surface 
temperature T (13) and (19) (L = 1) of a micro- 
asperity along the radius at two values of the number 
Bi  is shown in Fig. 3. At Bi  ~ 0 the temperature 
coincides with the stationary distribution obtained by 
(8) at Fo = 50 (Fig. 1). The number Bi  which contains 
a multiplier R according to the takes small (about 0.1) 
values. The comp~trison of stationary temperatures in 
Fig. 3 at Bi  = 0 and Bi  = 0.1 shows that convective 
heat transfer is not an essential factor. 

The distribution of the steady temperature T (13) 
for some values of the number Bi  along the axis p = 0 

0.6 

[.., 
0.4 

0.8 

, \  \\\ 
\ 

0.2 

o.o 
1 2 3 4 

p 

Fig. 3. Distribution of dimensionless steady temperature of 
surface Z = 0 along radius : 1, Bi = 0 ; 2, Bi = O. 1. 

is plotted in Fig. 4 Near the surface Z = 0 at Bi  = 0 

the temperature gradient d T / d Z  reaches its maximum 
value which is -7t/4 as it needs to be in accordance 
with the formula (15). 

The maximum value of the dimensionless tem- 
perature Tm~x in the half-space is 7r/4 at p = 0, Z = 0, 
B i ~  O, Fo ~ oo, This follows from equations (10), 
(15) and (17). Thus, tm~ = ~zTqoR/42 and, conse- 
quently, at a constant power of heat generation 
qo = f V p o  and increase of the hot spot radius the 
maximum temperature grows. The localized tem- 
perature rise occurs over the limits 0 ~< p ~< 3, Z = 0 
and lasts, as it is noted above =2.2 ms. 

In Fig. 5 one can see the graphs of dependence of 
the dimensionless temperature T(0, 0, F o) calculated 
by equations (24) and (26) on the magnitude of Four- 
ier criterion in the transitional process of purely con- 
vective cooling for three different values of the number 
Bi. It is evident that the temperature falls rapidly and 
it does not almost depend of the number Bi, i.e. in 
cooling heat pipe-bend by heat conductivity into a 
semi-infinite body plays a principal part and not the 
convective exchange with the surroundings. Thus, in 
the case of the half-space at Fo = 1 the temperature is 
only g 23% of its initial value which is 7r/4. The state 

0.6 ~ 

0.4 ~ ? \  2 

0.0 
2 3 4 

Z 

Fig. 4. Distribution of dimensionless steady temperature 
along axis p = 0 : l, Bi = 0 ; 2, Bi = O. 1. 
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1.05" II ~ 1 

0.70" 

0.00 ~ ~  
0 2 4 6 8 

FO 

Fig. 5. Dependence of dimensionless temperature at p = 0 
of surface Z = 0 from criterion Fourier by transitive process 
of pure convectivity cooling: 1, Bi = 0.001 ; 2, Bi = 0.01 ; 3, 

Bi = 0.1. 

0.9 

[.., 0.6 

0.3 

0.0 0..2 0.4 

4 

0.6 0.8 
Zl 

Fig. 7. Distribution of dimensionless non-stationary tem- 
perature along axis p = 0 at L = 1 : 1, Fo = O. 1 ; 2, Fo = 1 ; 

3, F o =  lO; 4, F o =  50. 

3.3 

[.., 2.2 

1.1 

¢,4 

3 
/ 

11  1 2 

0.0 0'.2 0'.4 0~6 0'.8 
Z1 

Fig. 6. Distribution of dimensionless non-stationary tem- 
perature along axis p = 0 at L = 0.1 : 1, Fo = 0.1 ; 2, Fo = 1 ; 

3, F o =  10;4, Fo = 50. 

6 

0 i i ~ 
L 

Fig. 8. Distribution of dimensionless stationary temperature 
of surface Z~ = 0 in point p = 0 from parameter L. 

will be considered steady when the value of  the tem- 
perature is only 10% of  its initial value. For  the half- 
space it is reached at F o  = 5 while for the layer at 
L = 1 the steady state will be reached at F o  = 3. For  
the conditions shown above, that is at a -~  10 -5 m 2 
s -1 and R = 17 or 21 mkm, the stationary state is 
reached by way of  0.14 and 0.22 ms (half-spaces) and 
0.084, 0.132 ms (layer), respectively. This temporal  
interval is an order smaller than those which were 
obtained in analysis of  the transitional processes of  
the initial heating of  the microasperity. 

The graphs represented in Figs. 6 and 7 show the 
change of  the non-stationary temperature (18) 
(L = 1) at the centre of  the heating spot along the 
depth. Moving off the boundary the temperature in 
the layer decreases, while the character of  behaviour 
and the velocity of  its change connects from the par- 
ameter L. It is distinctly evident that at L < 1 the 
temperature field along an axial coordinate changes 
according to the linear law. 

The graphs represented in Figs. 8-10 illustrate the 
dependence of  a layer temperature at the centre of  the 
contact spot (p = 0;  Zl = 0) from the parameter L. 
Figure 8 defines thin dependence for the steady tem- 
perature equation (19), Fig. 9 defines the temperature 

4.8 

3.2 

1.6 

1 

0.0 i 

L 

Fig. 9. Dependence of dimensionless temperature of surface 
Zj = 0 in point p = 0 from parameter L by transitive process 

of pure convectivity cooling : l, Fo = 0.1 ; 2, Fo = 1. 

in convective cooling equation (26) and Fig. 10 defines 
the non-stationary temperature equation (18). 

It follows from the graphs in Figs. 8 and 9, that 
with the increase L, the temperature monotonously 
decreases. Another  characteristic behaviour is the 
non-stationary temperature. In increasing o f  the cri- 
teflon F o  its local extremum relative to the parameter 
L is reached at points near the zero value. Thus L 
represents a parameter by selection o f  which it is poss- 
ible to reach that  at given moment  o f  frictional process 
the temperature on the contact  surface o f  the friction 
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3"3f" 4 

0 2 4 6 8 
L 

Fig. 10. Distribution of dimensionless non-stationary tem- 
perature of surface Zl = 0 in point p = 0 from parameter L : 

1, Fo=O. l :2 ,  Fo= l ;3 ,  Fo = 10;4, Fo = 50. 

couples will not  exceed the level at which the destruc- 
tion begins. 

6. CONCLUSIONS 

It has been shown that the influence of local heating 
of the contact spot is localized over the limits p = 5 
and essential temperature rise occurs at p ~< 3. 

F rom Figs. 3 and 4, it follows that the temperature 
field is strongly localized and has a sharp gradient 
both in axis and radial directions, Therefore, the 
heterogeneity of the temperature field is shown in the 
layer whose thickness is approximately 10 R. For  this 
reason the presence of  the rooting of shown thickness 
from the material with low heat conductivity on the 
surface of the half-space will lead to the temperature 
increase. Therefore, the thermophysical properties of 
this layer will play the principal parts in the calculation 
of the temperature field and not  the base. 

It  has been established that the cooling of  the sur- 
face is not  essential: this process does not  influence 
strongly the level[ of  the temperature flash or on the 
length of the region of local heating in radial or axis 
direction. Thus, in this case we may neglect the heat 
transfer and thereby simplify essentially the process 
of the solution finding. 

The characteri,;tic durations of the transitional pro- 
cesses in heating and cooling measured during the 
experiments and given in [7, 8] are approximately 0.1- 

0.2 mks. This is confirmed by theoretical estimates 
obtained in the present work. 
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